$$\lim_{x \to 0^-} \operatorname{sign}{\left(x \right)} = 1$$ More at x→0 from the left $$\lim_{x \to 0^+} \operatorname{sign}{\left(x \right)} = 1$$ $$\lim_{x \to \infty} \operatorname{sign}{\left(x \right)} = 1$$ More at x→oo $$\lim_{x \to 1^-} \operatorname{sign}{\left(x \right)} = 1$$ More at x→1 from the left $$\lim_{x \to 1^+} \operatorname{sign}{\left(x \right)} = 1$$ More at x→1 from the right $$\lim_{x \to -\infty} \operatorname{sign}{\left(x \right)} = -1$$ More at x→-oo