Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-3+sqrt(1+4*x))/(-2+x)
Limit of x^2+(sqrt(1+3*x)-sqrt(1-2*x))/x
Limit of ((11+7*x+7*x^2)/(14+9*x+13*x^2))^(4*x)
Limit of (-1+x+6*x^2)/(1/2+x)
Derivative of
:
7/x^2
Identical expressions
seven /x^ two
7 divide by x squared
seven divide by x to the power of two
7/x2
7/x²
7/x to the power of 2
7 divide by x^2
Limit of the function
/
7/x^2
Limit of the function 7/x^2
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/7 \ lim |--| x->oo| 2| \x /
$$\lim_{x \to \infty}\left(\frac{7}{x^{2}}\right)$$
Limit(7/x^2, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(\frac{7}{x^{2}}\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty}\left(\frac{7}{x^{2}}\right)$$ =
$$\lim_{x \to \infty}\left(\frac{7 \frac{1}{x^{2}}}{1}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{7 \frac{1}{x^{2}}}{1}\right) = \lim_{u \to 0^+}\left(7 u^{2}\right)$$
=
$$7 \cdot 0^{2} = 0$$
The final answer:
$$\lim_{x \to \infty}\left(\frac{7}{x^{2}}\right) = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{7}{x^{2}}\right) = 0$$
$$\lim_{x \to 0^-}\left(\frac{7}{x^{2}}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{7}{x^{2}}\right) = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{7}{x^{2}}\right) = 7$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{7}{x^{2}}\right) = 7$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{7}{x^{2}}\right) = 0$$
More at x→-oo
Rapid solution
[src]
0
$$0$$
Expand and simplify
The graph