Mister Exam

Other calculators:


7/2

Limit of the function 7/2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (7/2)
x->oo     
$$\lim_{x \to \infty} \frac{7}{2}$$
Limit(7/2, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \frac{7}{2} = \frac{7}{2}$$
$$\lim_{x \to 0^-} \frac{7}{2} = \frac{7}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{7}{2} = \frac{7}{2}$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{7}{2} = \frac{7}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{7}{2} = \frac{7}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{7}{2} = \frac{7}{2}$$
More at x→-oo
Rapid solution [src]
7/2
$$\frac{7}{2}$$
The graph
Limit of the function 7/2