Mister Exam

Limit of the function pi+x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
  lim  (pi + x)
x->-pi+        
$$\lim_{x \to - \pi^+}\left(x + \pi\right)$$
Limit(pi + x, x, -pi)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to - \pi^-}\left(x + \pi\right) = 0$$
More at x→-pi from the left
$$\lim_{x \to - \pi^+}\left(x + \pi\right) = 0$$
$$\lim_{x \to \infty}\left(x + \pi\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(x + \pi\right) = \pi$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x + \pi\right) = \pi$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x + \pi\right) = 1 + \pi$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x + \pi\right) = 1 + \pi$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x + \pi\right) = -\infty$$
More at x→-oo
One‐sided limits [src]
  lim  (pi + x)
x->-pi+        
$$\lim_{x \to - \pi^+}\left(x + \pi\right)$$
0
$$0$$
= 1.22464679914735e-16
  lim  (pi + x)
x->-pi-        
$$\lim_{x \to - \pi^-}\left(x + \pi\right)$$
0
$$0$$
= 1.22464679914735e-16
= 1.22464679914735e-16
Numerical answer [src]
1.22464679914735e-16
1.22464679914735e-16
The graph
Limit of the function pi+x