Mister Exam

Limit of the function pi-x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  (pi - x)
x->-oo        
$$\lim_{x \to -\infty}\left(\pi - x\right)$$
Limit(pi - x, x, -oo)
Detail solution
Let's take the limit
$$\lim_{x \to -\infty}\left(\pi - x\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to -\infty}\left(\pi - x\right)$$ =
$$\lim_{x \to -\infty}\left(\frac{-1 + \frac{\pi}{x}}{\frac{1}{x}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to -\infty}\left(\frac{-1 + \frac{\pi}{x}}{\frac{1}{x}}\right) = \lim_{u \to 0^+}\left(\frac{\pi u - 1}{u}\right)$$
=
$$\frac{-1 + 0 \pi}{0} = \infty$$

The final answer:
$$\lim_{x \to -\infty}\left(\pi - x\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(\pi - x\right) = \infty$$
$$\lim_{x \to \infty}\left(\pi - x\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(\pi - x\right) = \pi$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\pi - x\right) = \pi$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\pi - x\right) = -1 + \pi$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\pi - x\right) = -1 + \pi$$
More at x→1 from the right
The graph
Limit of the function pi-x