Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-2+2*x^2+log(x))/(e^x-e)
Limit of (-x^2+4*x)/(2-sqrt(x))
Limit of ((2+3*x)/(-1+3*x))^(-1+4*x)
Limit of (3-x+2*x^2)/(5+x^3-8*x)
Graphing y =
:
pi-x
Integral of d{x}
:
pi-x
Identical expressions
pi-x
Pi minus x
Similar expressions
pi+x
Limit of the function
/
pi-x
Limit of the function pi-x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (pi - x) x->-oo
$$\lim_{x \to -\infty}\left(\pi - x\right)$$
Limit(pi - x, x, -oo)
Detail solution
Let's take the limit
$$\lim_{x \to -\infty}\left(\pi - x\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to -\infty}\left(\pi - x\right)$$ =
$$\lim_{x \to -\infty}\left(\frac{-1 + \frac{\pi}{x}}{\frac{1}{x}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to -\infty}\left(\frac{-1 + \frac{\pi}{x}}{\frac{1}{x}}\right) = \lim_{u \to 0^+}\left(\frac{\pi u - 1}{u}\right)$$
=
$$\frac{-1 + 0 \pi}{0} = \infty$$
The final answer:
$$\lim_{x \to -\infty}\left(\pi - x\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(\pi - x\right) = \infty$$
$$\lim_{x \to \infty}\left(\pi - x\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(\pi - x\right) = \pi$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\pi - x\right) = \pi$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\pi - x\right) = -1 + \pi$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\pi - x\right) = -1 + \pi$$
More at x→1 from the right
The graph