Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (1+x)/(2+(-7+x)^(1/3))
Limit of (-1+x)*cos(1/(-1+x))
Limit of x/(1-(1+x)^(1/3))
Limit of tan(7*x)^2/sin(4*x^2)
Graphing y =
:
1000*x
Identical expressions
one thousand *x
1000 multiply by x
one thousand multiply by x
1000x
Similar expressions
1000^x/factorial(x)
Limit of the function
/
1000*x
Limit of the function 1000*x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (1000*x) x->oo
$$\lim_{x \to \infty}\left(1000 x\right)$$
Limit(1000*x, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(1000 x\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty}\left(1000 x\right)$$ =
$$\lim_{x \to \infty} \frac{1}{\frac{1}{1000} \frac{1}{x}}$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty} \frac{1}{\frac{1}{1000} \frac{1}{x}} = \lim_{u \to 0^+}\left(\frac{1000}{u}\right)$$
=
$$\frac{1000}{0} = \infty$$
The final answer:
$$\lim_{x \to \infty}\left(1000 x\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(1000 x\right) = \infty$$
$$\lim_{x \to 0^-}\left(1000 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(1000 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(1000 x\right) = 1000$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(1000 x\right) = 1000$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(1000 x\right) = -\infty$$
More at x→-oo
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
The graph