Mister Exam

Limit of the function 1+x^4

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     4\
 lim \1 + x /
x->0+        
$$\lim_{x \to 0^+}\left(x^{4} + 1\right)$$
Limit(1 + x^4, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(x^{4} + 1\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{4} + 1\right) = 1$$
$$\lim_{x \to \infty}\left(x^{4} + 1\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(x^{4} + 1\right) = 2$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{4} + 1\right) = 2$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{4} + 1\right) = \infty$$
More at x→-oo
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
     /     4\
 lim \1 + x /
x->0+        
$$\lim_{x \to 0^+}\left(x^{4} + 1\right)$$
1
$$1$$
= 1
     /     4\
 lim \1 + x /
x->0-        
$$\lim_{x \to 0^-}\left(x^{4} + 1\right)$$
1
$$1$$
= 1
= 1
Numerical answer [src]
1.0
1.0
The graph
Limit of the function 1+x^4