$$\lim_{x \to \infty}\left(- x^{2} + \left(x + 1\right)\right) = -\infty$$ $$\lim_{x \to 0^-}\left(- x^{2} + \left(x + 1\right)\right) = 1$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(- x^{2} + \left(x + 1\right)\right) = 1$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(- x^{2} + \left(x + 1\right)\right) = 1$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(- x^{2} + \left(x + 1\right)\right) = 1$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(- x^{2} + \left(x + 1\right)\right) = -\infty$$ More at x→-oo