Mister Exam

Other calculators:


(1+x)/x^2

Limit of the function (1+x)/x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /1 + x\
 lim |-----|
x->oo|   2 |
     \  x  /
$$\lim_{x \to \infty}\left(\frac{x + 1}{x^{2}}\right)$$
Limit((1 + x)/x^2, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(\frac{x + 1}{x^{2}}\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty}\left(\frac{x + 1}{x^{2}}\right)$$ =
$$\lim_{x \to \infty}\left(\frac{\frac{1}{x} + \frac{1}{x^{2}}}{1}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{\frac{1}{x} + \frac{1}{x^{2}}}{1}\right) = \lim_{u \to 0^+}\left(u^{2} + u\right)$$
=
$$0^{2} = 0$$

The final answer:
$$\lim_{x \to \infty}\left(\frac{x + 1}{x^{2}}\right) = 0$$
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
$$\lim_{x \to \infty}\left(x + 1\right) = \infty$$
and limit for the denominator is
$$\lim_{x \to \infty} x^{2} = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \infty}\left(\frac{x + 1}{x^{2}}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \left(x + 1\right)}{\frac{d}{d x} x^{2}}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{1}{2 x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{1}{2 x}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{x + 1}{x^{2}}\right) = 0$$
$$\lim_{x \to 0^-}\left(\frac{x + 1}{x^{2}}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x + 1}{x^{2}}\right) = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x + 1}{x^{2}}\right) = 2$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x + 1}{x^{2}}\right) = 2$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x + 1}{x^{2}}\right) = 0$$
More at x→-oo
Rapid solution [src]
0
$$0$$
The graph
Limit of the function (1+x)/x^2