$$\lim_{x \to \infty} \left(\frac{x + 1}{x + 11}\right)^{x} = e^{-10}$$ $$\lim_{x \to 0^-} \left(\frac{x + 1}{x + 11}\right)^{x} = 1$$ More at x→0 from the left $$\lim_{x \to 0^+} \left(\frac{x + 1}{x + 11}\right)^{x} = 1$$ More at x→0 from the right $$\lim_{x \to 1^-} \left(\frac{x + 1}{x + 11}\right)^{x} = \frac{1}{6}$$ More at x→1 from the left $$\lim_{x \to 1^+} \left(\frac{x + 1}{x + 11}\right)^{x} = \frac{1}{6}$$ More at x→1 from the right $$\lim_{x \to -\infty} \left(\frac{x + 1}{x + 11}\right)^{x} = e^{-10}$$ More at x→-oo