Mister Exam

Other calculators:


((1+x)/(11+x))^x

Limit of the function ((1+x)/(11+x))^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
             x
     /1 + x \ 
 lim |------| 
x->oo\11 + x/ 
limx(x+1x+11)x\lim_{x \to \infty} \left(\frac{x + 1}{x + 11}\right)^{x}
Limit(((1 + x)/(11 + x))^x, x, oo, dir='-')
Detail solution
Let's take the limit
limx(x+1x+11)x\lim_{x \to \infty} \left(\frac{x + 1}{x + 11}\right)^{x}
transform
limx(x+1x+11)x\lim_{x \to \infty} \left(\frac{x + 1}{x + 11}\right)^{x}
=
limx((x+11)10x+11)x\lim_{x \to \infty} \left(\frac{\left(x + 11\right) - 10}{x + 11}\right)^{x}
=
limx(10x+11+x+11x+11)x\lim_{x \to \infty} \left(- \frac{10}{x + 11} + \frac{x + 11}{x + 11}\right)^{x}
=
limx(110x+11)x\lim_{x \to \infty} \left(1 - \frac{10}{x + 11}\right)^{x}
=
do replacement
u=x+1110u = \frac{x + 11}{-10}
then
limx(110x+11)x\lim_{x \to \infty} \left(1 - \frac{10}{x + 11}\right)^{x} =
=
limu(1+1u)10u11\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{- 10 u - 11}
=
limu((1+1u)10u(1+1u)11)\lim_{u \to \infty}\left(\frac{\left(1 + \frac{1}{u}\right)^{- 10 u}}{\left(1 + \frac{1}{u}\right)^{11}}\right)
=
limu1(1+1u)11limu(1+1u)10u\lim_{u \to \infty} \frac{1}{\left(1 + \frac{1}{u}\right)^{11}} \lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{- 10 u}
=
limu(1+1u)10u\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{- 10 u}
=
((limu(1+1u)u))10\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-10}
The limit
limu(1+1u)u\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}
is second remarkable limit, is equal to e ~ 2.718281828459045
then
((limu(1+1u)u))10=e10\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-10} = e^{-10}

The final answer:
limx(x+1x+11)x=e10\lim_{x \to \infty} \left(\frac{x + 1}{x + 11}\right)^{x} = e^{-10}
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10100100
Rapid solution [src]
 -10
e   
e10e^{-10}
Other limits x→0, -oo, +oo, 1
limx(x+1x+11)x=e10\lim_{x \to \infty} \left(\frac{x + 1}{x + 11}\right)^{x} = e^{-10}
limx0(x+1x+11)x=1\lim_{x \to 0^-} \left(\frac{x + 1}{x + 11}\right)^{x} = 1
More at x→0 from the left
limx0+(x+1x+11)x=1\lim_{x \to 0^+} \left(\frac{x + 1}{x + 11}\right)^{x} = 1
More at x→0 from the right
limx1(x+1x+11)x=16\lim_{x \to 1^-} \left(\frac{x + 1}{x + 11}\right)^{x} = \frac{1}{6}
More at x→1 from the left
limx1+(x+1x+11)x=16\lim_{x \to 1^+} \left(\frac{x + 1}{x + 11}\right)^{x} = \frac{1}{6}
More at x→1 from the right
limx(x+1x+11)x=e10\lim_{x \to -\infty} \left(\frac{x + 1}{x + 11}\right)^{x} = e^{-10}
More at x→-oo
The graph
Limit of the function ((1+x)/(11+x))^x