Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of sin(3)^2/x
Limit of x^4+2*cos(x)^2
Limit of x*2^x*3^(-x)
Limit of log(1+3*x^2)/(x^3-5*x^2)
Integral of d{x}
:
1+x
Expression
:
1+x
Derivative of
:
1+x
Identical expressions
one +x
1 plus x
one plus x
Similar expressions
1-x
Limit of the function
/
1+x
Limit of the function 1+x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (1 + x) x->oo
$$\lim_{x \to \infty}\left(x + 1\right)$$
Limit(1 + x, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(x + 1\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty}\left(x + 1\right)$$ =
$$\lim_{x \to \infty}\left(\frac{1 + \frac{1}{x}}{\frac{1}{x}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1 + \frac{1}{x}}{\frac{1}{x}}\right) = \lim_{u \to 0^+}\left(\frac{u + 1}{u}\right)$$
=
$$\frac{1}{0} = \infty$$
The final answer:
$$\lim_{x \to \infty}\left(x + 1\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(x + 1\right) = \infty$$
$$\lim_{x \to 0^-}\left(x + 1\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x + 1\right) = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x + 1\right) = 2$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x + 1\right) = 2$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x + 1\right) = -\infty$$
More at x→-oo
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
The graph