Mister Exam

Other calculators:


(1+6*x)^(1/x)

Limit of the function (1+6*x)^(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     x _________
 lim \/ 1 + 6*x 
x->0+           
$$\lim_{x \to 0^+} \left(6 x + 1\right)^{\frac{1}{x}}$$
Limit((1 + 6*x)^(1/x), x, 0)
Detail solution
Let's take the limit
$$\lim_{x \to 0^+} \left(6 x + 1\right)^{\frac{1}{x}}$$
transform
do replacement
$$u = \frac{1}{6 x}$$
then
$$\lim_{x \to 0^+} \left(1 + \frac{6}{\frac{1}{x}}\right)^{\frac{1}{x}}$$ =
=
$$\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{6 u}$$
=
$$\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{6 u}$$
=
$$\left(\left(\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{6}$$
The limit
$$\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}$$
is second remarkable limit, is equal to e ~ 2.718281828459045
then
$$\left(\left(\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{6} = e^{6}$$

The final answer:
$$\lim_{x \to 0^+} \left(6 x + 1\right)^{\frac{1}{x}} = e^{6}$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
 6
e 
$$e^{6}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \left(6 x + 1\right)^{\frac{1}{x}} = e^{6}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(6 x + 1\right)^{\frac{1}{x}} = e^{6}$$
$$\lim_{x \to \infty} \left(6 x + 1\right)^{\frac{1}{x}} = 1$$
More at x→oo
$$\lim_{x \to 1^-} \left(6 x + 1\right)^{\frac{1}{x}} = 7$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(6 x + 1\right)^{\frac{1}{x}} = 7$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(6 x + 1\right)^{\frac{1}{x}} = 1$$
More at x→-oo
One‐sided limits [src]
     x _________
 lim \/ 1 + 6*x 
x->0+           
$$\lim_{x \to 0^+} \left(6 x + 1\right)^{\frac{1}{x}}$$
 6
e 
$$e^{6}$$
= 403.428793492735
     x _________
 lim \/ 1 + 6*x 
x->0-           
$$\lim_{x \to 0^-} \left(6 x + 1\right)^{\frac{1}{x}}$$
 6
e 
$$e^{6}$$
exp(6)
Numerical answer [src]
403.428793492735
403.428793492735
The graph
Limit of the function (1+6*x)^(1/x)