cot(x)
lim (1 + sin(x))
x->1+
$$\lim_{x \to 1^+} \left(\sin{\left(x \right)} + 1\right)^{\cot{\left(x \right)}}$$
1
------
tan(1)
(1 + sin(1))
$$\left(\sin{\left(1 \right)} + 1\right)^{\frac{1}{\tan{\left(1 \right)}}}$$
cot(x)
lim (1 + sin(x))
x->1-
$$\lim_{x \to 1^-} \left(\sin{\left(x \right)} + 1\right)^{\cot{\left(x \right)}}$$
1
------
tan(1)
(1 + sin(1))
$$\left(\sin{\left(1 \right)} + 1\right)^{\frac{1}{\tan{\left(1 \right)}}}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-} \left(\sin{\left(x \right)} + 1\right)^{\cot{\left(x \right)}} = \left(\sin{\left(1 \right)} + 1\right)^{\frac{1}{\tan{\left(1 \right)}}}$$
More at x→1 from the left$$\lim_{x \to 1^+} \left(\sin{\left(x \right)} + 1\right)^{\cot{\left(x \right)}} = \left(\sin{\left(1 \right)} + 1\right)^{\frac{1}{\tan{\left(1 \right)}}}$$
$$\lim_{x \to \infty} \left(\sin{\left(x \right)} + 1\right)^{\cot{\left(x \right)}}$$
More at x→oo$$\lim_{x \to 0^-} \left(\sin{\left(x \right)} + 1\right)^{\cot{\left(x \right)}} = e$$
More at x→0 from the left$$\lim_{x \to 0^+} \left(\sin{\left(x \right)} + 1\right)^{\cot{\left(x \right)}} = e$$
More at x→0 from the right$$\lim_{x \to -\infty} \left(\sin{\left(x \right)} + 1\right)^{\cot{\left(x \right)}}$$
More at x→-oo