Mister Exam

Other calculators:


(1+sin(x))^cot(x)

Limit of the function (1+sin(x))^cot(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
                 cot(x)
 lim (1 + sin(x))      
x->1+                  
$$\lim_{x \to 1^+} \left(\sin{\left(x \right)} + 1\right)^{\cot{\left(x \right)}}$$
Limit((1 + sin(x))^cot(x), x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
              1   
            ------
            tan(1)
(1 + sin(1))      
$$\left(\sin{\left(1 \right)} + 1\right)^{\frac{1}{\tan{\left(1 \right)}}}$$
One‐sided limits [src]
                 cot(x)
 lim (1 + sin(x))      
x->1+                  
$$\lim_{x \to 1^+} \left(\sin{\left(x \right)} + 1\right)^{\cot{\left(x \right)}}$$
              1   
            ------
            tan(1)
(1 + sin(1))      
$$\left(\sin{\left(1 \right)} + 1\right)^{\frac{1}{\tan{\left(1 \right)}}}$$
= 1.47999555699277
                 cot(x)
 lim (1 + sin(x))      
x->1-                  
$$\lim_{x \to 1^-} \left(\sin{\left(x \right)} + 1\right)^{\cot{\left(x \right)}}$$
              1   
            ------
            tan(1)
(1 + sin(1))      
$$\left(\sin{\left(1 \right)} + 1\right)^{\frac{1}{\tan{\left(1 \right)}}}$$
= 1.47999555699277
= 1.47999555699277
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-} \left(\sin{\left(x \right)} + 1\right)^{\cot{\left(x \right)}} = \left(\sin{\left(1 \right)} + 1\right)^{\frac{1}{\tan{\left(1 \right)}}}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(\sin{\left(x \right)} + 1\right)^{\cot{\left(x \right)}} = \left(\sin{\left(1 \right)} + 1\right)^{\frac{1}{\tan{\left(1 \right)}}}$$
$$\lim_{x \to \infty} \left(\sin{\left(x \right)} + 1\right)^{\cot{\left(x \right)}}$$
More at x→oo
$$\lim_{x \to 0^-} \left(\sin{\left(x \right)} + 1\right)^{\cot{\left(x \right)}} = e$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(\sin{\left(x \right)} + 1\right)^{\cot{\left(x \right)}} = e$$
More at x→0 from the right
$$\lim_{x \to -\infty} \left(\sin{\left(x \right)} + 1\right)^{\cot{\left(x \right)}}$$
More at x→-oo
Numerical answer [src]
1.47999555699277
1.47999555699277
The graph
Limit of the function (1+sin(x))^cot(x)