Mister Exam

Other calculators:


1+sin(x)

Limit of the function 1+sin(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (1 + sin(x))
x->0+            
$$\lim_{x \to 0^+}\left(\sin{\left(x \right)} + 1\right)$$
Limit(1 + sin(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\sin{\left(x \right)} + 1\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\sin{\left(x \right)} + 1\right) = 1$$
$$\lim_{x \to \infty}\left(\sin{\left(x \right)} + 1\right) = \left\langle 0, 2\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-}\left(\sin{\left(x \right)} + 1\right) = \sin{\left(1 \right)} + 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\sin{\left(x \right)} + 1\right) = \sin{\left(1 \right)} + 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\sin{\left(x \right)} + 1\right) = \left\langle 0, 2\right\rangle$$
More at x→-oo
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
 lim (1 + sin(x))
x->0+            
$$\lim_{x \to 0^+}\left(\sin{\left(x \right)} + 1\right)$$
1
$$1$$
= 1
 lim (1 + sin(x))
x->0-            
$$\lim_{x \to 0^-}\left(\sin{\left(x \right)} + 1\right)$$
1
$$1$$
= 1
= 1
Numerical answer [src]
1.0
1.0
The graph
Limit of the function 1+sin(x)