Mister Exam

Other calculators:


(1+sin(4*x))^(1/x)

Limit of the function (1+sin(4*x))^(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     x ______________
 lim \/ 1 + sin(4*x) 
x->0+                
$$\lim_{x \to 0^+} \left(\sin{\left(4 x \right)} + 1\right)^{1 \cdot \frac{1}{x}}$$
Limit((1 + sin(4*x))^(1/x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
 4
e 
$$e^{4}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \left(\sin{\left(4 x \right)} + 1\right)^{1 \cdot \frac{1}{x}} = e^{4}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(\sin{\left(4 x \right)} + 1\right)^{1 \cdot \frac{1}{x}} = e^{4}$$
$$\lim_{x \to \infty} \left(\sin{\left(4 x \right)} + 1\right)^{1 \cdot \frac{1}{x}} = \left\langle 0, 1\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-} \left(\sin{\left(4 x \right)} + 1\right)^{1 \cdot \frac{1}{x}} = \sin{\left(4 \right)} + 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(\sin{\left(4 x \right)} + 1\right)^{1 \cdot \frac{1}{x}} = \sin{\left(4 \right)} + 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(\sin{\left(4 x \right)} + 1\right)^{1 \cdot \frac{1}{x}} = \left\langle 1, \infty\right\rangle$$
More at x→-oo
One‐sided limits [src]
     x ______________
 lim \/ 1 + sin(4*x) 
x->0+                
$$\lim_{x \to 0^+} \left(\sin{\left(4 x \right)} + 1\right)^{1 \cdot \frac{1}{x}}$$
 4
e 
$$e^{4}$$
= 54.5981500331442
     x ______________
 lim \/ 1 + sin(4*x) 
x->0-                
$$\lim_{x \to 0^-} \left(\sin{\left(4 x \right)} + 1\right)^{1 \cdot \frac{1}{x}}$$
 4
e 
$$e^{4}$$
= 54.5981500331442
= 54.5981500331442
Numerical answer [src]
54.5981500331442
54.5981500331442
The graph
Limit of the function (1+sin(4*x))^(1/x)