$$\lim_{x \to 0^-} \left(\sin{\left(4 x \right)} + 1\right)^{1 \cdot \frac{1}{x}} = e^{4}$$
More at x→0 from the left$$\lim_{x \to 0^+} \left(\sin{\left(4 x \right)} + 1\right)^{1 \cdot \frac{1}{x}} = e^{4}$$
$$\lim_{x \to \infty} \left(\sin{\left(4 x \right)} + 1\right)^{1 \cdot \frac{1}{x}} = \left\langle 0, 1\right\rangle$$
More at x→oo$$\lim_{x \to 1^-} \left(\sin{\left(4 x \right)} + 1\right)^{1 \cdot \frac{1}{x}} = \sin{\left(4 \right)} + 1$$
More at x→1 from the left$$\lim_{x \to 1^+} \left(\sin{\left(4 x \right)} + 1\right)^{1 \cdot \frac{1}{x}} = \sin{\left(4 \right)} + 1$$
More at x→1 from the right$$\lim_{x \to -\infty} \left(\sin{\left(4 x \right)} + 1\right)^{1 \cdot \frac{1}{x}} = \left\langle 1, \infty\right\rangle$$
More at x→-oo