$$\lim_{x \to \infty}\left(\left(\frac{7 x}{2} + 1\right)^{x} + 1\right) = \infty$$
$$\lim_{x \to 0^-}\left(\left(\frac{7 x}{2} + 1\right)^{x} + 1\right) = 2$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\left(\frac{7 x}{2} + 1\right)^{x} + 1\right) = 2$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\left(\frac{7 x}{2} + 1\right)^{x} + 1\right) = \frac{11}{2}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\left(\frac{7 x}{2} + 1\right)^{x} + 1\right) = \frac{11}{2}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\left(\frac{7 x}{2} + 1\right)^{x} + 1\right) = \infty$$
More at x→-oo