Mister Exam

Other calculators:


1+(1+7*x/2)^x

Limit of the function 1+(1+7*x/2)^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /             x\
     |    /    7*x\ |
 lim |1 + |1 + ---| |
x->oo\    \     2 / /
$$\lim_{x \to \infty}\left(\left(\frac{7 x}{2} + 1\right)^{x} + 1\right)$$
Limit(1 + (1 + (7*x)/2)^x, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\left(\frac{7 x}{2} + 1\right)^{x} + 1\right) = \infty$$
$$\lim_{x \to 0^-}\left(\left(\frac{7 x}{2} + 1\right)^{x} + 1\right) = 2$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\left(\frac{7 x}{2} + 1\right)^{x} + 1\right) = 2$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\left(\frac{7 x}{2} + 1\right)^{x} + 1\right) = \frac{11}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\left(\frac{7 x}{2} + 1\right)^{x} + 1\right) = \frac{11}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\left(\frac{7 x}{2} + 1\right)^{x} + 1\right) = \infty$$
More at x→-oo
The graph
Limit of the function 1+(1+7*x/2)^x