Mister Exam

Other calculators:


(1+5/n)^n

Limit of the function (1+5/n)^n

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
            n
     /    5\ 
 lim |1 + -| 
n->oo\    n/ 
limn(1+5n)n\lim_{n \to \infty} \left(1 + \frac{5}{n}\right)^{n}
Limit((1 + 5/n)^n, n, oo, dir='-')
Detail solution
Let's take the limit
limn(1+5n)n\lim_{n \to \infty} \left(1 + \frac{5}{n}\right)^{n}
transform
do replacement
u=n5u = \frac{n}{5}
then
limn(1+5n)n\lim_{n \to \infty} \left(1 + \frac{5}{n}\right)^{n} =
=
limu(1+1u)5u\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{5 u}
=
limu(1+1u)5u\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{5 u}
=
((limu(1+1u)u))5\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{5}
The limit
limu(1+1u)u\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}
is second remarkable limit, is equal to e ~ 2.718281828459045
then
((limu(1+1u)u))5=e5\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{5} = e^{5}

The final answer:
limn(1+5n)n=e5\lim_{n \to \infty} \left(1 + \frac{5}{n}\right)^{n} = e^{5}
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10100100000000
Other limits n→0, -oo, +oo, 1
limn(1+5n)n=e5\lim_{n \to \infty} \left(1 + \frac{5}{n}\right)^{n} = e^{5}
limn0(1+5n)n=1\lim_{n \to 0^-} \left(1 + \frac{5}{n}\right)^{n} = 1
More at n→0 from the left
limn0+(1+5n)n=1\lim_{n \to 0^+} \left(1 + \frac{5}{n}\right)^{n} = 1
More at n→0 from the right
limn1(1+5n)n=6\lim_{n \to 1^-} \left(1 + \frac{5}{n}\right)^{n} = 6
More at n→1 from the left
limn1+(1+5n)n=6\lim_{n \to 1^+} \left(1 + \frac{5}{n}\right)^{n} = 6
More at n→1 from the right
limn(1+5n)n=e5\lim_{n \to -\infty} \left(1 + \frac{5}{n}\right)^{n} = e^{5}
More at n→-oo
Rapid solution [src]
 5
e 
e5e^{5}
The graph
Limit of the function (1+5/n)^n