Mister Exam

Other calculators:


1+cos(x)

Limit of the function 1+cos(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (1 + cos(x))
x->0+            
$$\lim_{x \to 0^+}\left(\cos{\left(x \right)} + 1\right)$$
Limit(1 + cos(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
 lim (1 + cos(x))
x->0+            
$$\lim_{x \to 0^+}\left(\cos{\left(x \right)} + 1\right)$$
2
$$2$$
= 2.0
 lim (1 + cos(x))
x->0-            
$$\lim_{x \to 0^-}\left(\cos{\left(x \right)} + 1\right)$$
2
$$2$$
= 2.0
= 2.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\cos{\left(x \right)} + 1\right) = 2$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\cos{\left(x \right)} + 1\right) = 2$$
$$\lim_{x \to \infty}\left(\cos{\left(x \right)} + 1\right) = \left\langle 0, 2\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-}\left(\cos{\left(x \right)} + 1\right) = \cos{\left(1 \right)} + 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\cos{\left(x \right)} + 1\right) = \cos{\left(1 \right)} + 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\cos{\left(x \right)} + 1\right) = \left\langle 0, 2\right\rangle$$
More at x→-oo
Rapid solution [src]
2
$$2$$
Numerical answer [src]
2.0
2.0
The graph
Limit of the function 1+cos(x)