Mister Exam

Other calculators:


1+cos(3*x)

Limit of the function 1+cos(3*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  (1 + cos(3*x))
x->pi+              
$$\lim_{x \to \pi^+}\left(\cos{\left(3 x \right)} + 1\right)$$
Limit(1 + cos(3*x), x, pi)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
 lim  (1 + cos(3*x))
x->pi+              
$$\lim_{x \to \pi^+}\left(\cos{\left(3 x \right)} + 1\right)$$
0
$$0$$
= -4.07664183432652e-31
 lim  (1 + cos(3*x))
x->pi-              
$$\lim_{x \to \pi^-}\left(\cos{\left(3 x \right)} + 1\right)$$
0
$$0$$
= -4.0766418343265e-31
= -4.0766418343265e-31
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \pi^-}\left(\cos{\left(3 x \right)} + 1\right) = 0$$
More at x→pi from the left
$$\lim_{x \to \pi^+}\left(\cos{\left(3 x \right)} + 1\right) = 0$$
$$\lim_{x \to \infty}\left(\cos{\left(3 x \right)} + 1\right) = \left\langle 0, 2\right\rangle$$
More at x→oo
$$\lim_{x \to 0^-}\left(\cos{\left(3 x \right)} + 1\right) = 2$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\cos{\left(3 x \right)} + 1\right) = 2$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\cos{\left(3 x \right)} + 1\right) = \cos{\left(3 \right)} + 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\cos{\left(3 x \right)} + 1\right) = \cos{\left(3 \right)} + 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\cos{\left(3 x \right)} + 1\right) = \left\langle 0, 2\right\rangle$$
More at x→-oo
Numerical answer [src]
-4.07664183432652e-31
-4.07664183432652e-31
The graph
Limit of the function 1+cos(3*x)