Mister Exam

Other calculators:


(1-x^2)/(1-sqrt(x))

Limit of the function (1-x^2)/(1-sqrt(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /       2 \
     |  1 - x  |
 lim |---------|
x->1+|      ___|
     \1 - \/ x /
$$\lim_{x \to 1^+}\left(\frac{1 - x^{2}}{1 - \sqrt{x}}\right)$$
Limit((1 - x^2)/(1 - sqrt(x)), x, 1)
Detail solution
Let's take the limit
$$\lim_{x \to 1^+}\left(\frac{1 - x^{2}}{1 - \sqrt{x}}\right)$$
Multiply numerator and denominator by
$$\sqrt{x} + 1$$
we get
$$\frac{\left(1 - x^{2}\right) \left(\sqrt{x} + 1\right)}{\left(1 - \sqrt{x}\right) \left(\sqrt{x} + 1\right)}$$
=
$$\frac{\left(-1\right) \left(\sqrt{x} + 1\right) \left(x - 1\right) \left(x + 1\right)}{1 - x}$$
=
$$\left(\sqrt{x} + 1\right) \left(x + 1\right)$$
The final answer:
$$\lim_{x \to 1^+}\left(\frac{1 - x^{2}}{1 - \sqrt{x}}\right)$$
=
$$\lim_{x \to 1^+}\left(\left(\sqrt{x} + 1\right) \left(x + 1\right)\right)$$
=
$$4$$
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 1^+}\left(1 - x^{2}\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 1^+}\left(1 - \sqrt{x}\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 1^+}\left(\frac{1 - x^{2}}{1 - \sqrt{x}}\right)$$
=
$$\lim_{x \to 1^+}\left(\frac{\frac{d}{d x} \left(1 - x^{2}\right)}{\frac{d}{d x} \left(1 - \sqrt{x}\right)}\right)$$
=
$$\lim_{x \to 1^+}\left(4 x^{\frac{3}{2}}\right)$$
=
$$\lim_{x \to 1^+} 4$$
=
$$\lim_{x \to 1^+} 4$$
=
$$4$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(\frac{1 - x^{2}}{1 - \sqrt{x}}\right) = 4$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{1 - x^{2}}{1 - \sqrt{x}}\right) = 4$$
$$\lim_{x \to \infty}\left(\frac{1 - x^{2}}{1 - \sqrt{x}}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{1 - x^{2}}{1 - \sqrt{x}}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{1 - x^{2}}{1 - \sqrt{x}}\right) = 1$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(\frac{1 - x^{2}}{1 - \sqrt{x}}\right) = - \infty i$$
More at x→-oo
One‐sided limits [src]
     /       2 \
     |  1 - x  |
 lim |---------|
x->1+|      ___|
     \1 - \/ x /
$$\lim_{x \to 1^+}\left(\frac{1 - x^{2}}{1 - \sqrt{x}}\right)$$
4
$$4$$
= 4
     /       2 \
     |  1 - x  |
 lim |---------|
x->1-|      ___|
     \1 - \/ x /
$$\lim_{x \to 1^-}\left(\frac{1 - x^{2}}{1 - \sqrt{x}}\right)$$
4
$$4$$
= 4
= 4
Rapid solution [src]
4
$$4$$
Numerical answer [src]
4.0
4.0
The graph
Limit of the function (1-x^2)/(1-sqrt(x))