Mister Exam

Other calculators:


1-x*sin(1/x)

Limit of the function 1-x*sin(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /         /1\\
 lim |1 - x*sin|-||
x->0+\         \x//
$$\lim_{x \to 0^+}\left(- x \sin{\left(\frac{1}{x} \right)} + 1\right)$$
Limit(1 - x*sin(1/x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
     /         /1\\
 lim |1 - x*sin|-||
x->0+\         \x//
$$\lim_{x \to 0^+}\left(- x \sin{\left(\frac{1}{x} \right)} + 1\right)$$
1
$$1$$
= 1.0
     /         /1\\
 lim |1 - x*sin|-||
x->0-\         \x//
$$\lim_{x \to 0^-}\left(- x \sin{\left(\frac{1}{x} \right)} + 1\right)$$
1
$$1$$
= 1.0
= 1.0
Rapid solution [src]
1
$$1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(- x \sin{\left(\frac{1}{x} \right)} + 1\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- x \sin{\left(\frac{1}{x} \right)} + 1\right) = 1$$
$$\lim_{x \to \infty}\left(- x \sin{\left(\frac{1}{x} \right)} + 1\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(- x \sin{\left(\frac{1}{x} \right)} + 1\right) = 1 - \sin{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- x \sin{\left(\frac{1}{x} \right)} + 1\right) = 1 - \sin{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- x \sin{\left(\frac{1}{x} \right)} + 1\right) = 0$$
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function 1-x*sin(1/x)