$$\lim_{x \to 0^-}\left(- x \sin{\left(\frac{1}{x} \right)} + 1\right) = 1$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(- x \sin{\left(\frac{1}{x} \right)} + 1\right) = 1$$
$$\lim_{x \to \infty}\left(- x \sin{\left(\frac{1}{x} \right)} + 1\right) = 0$$
More at x→oo$$\lim_{x \to 1^-}\left(- x \sin{\left(\frac{1}{x} \right)} + 1\right) = 1 - \sin{\left(1 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(- x \sin{\left(\frac{1}{x} \right)} + 1\right) = 1 - \sin{\left(1 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(- x \sin{\left(\frac{1}{x} \right)} + 1\right) = 0$$
More at x→-oo