Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (3+2*n)/|-1+2*n|
Limit of (3+x^2-4*x)/(-9+x^2)
Limit of (x^2-3*x)/(-8+x^2)
Limit of (1+5*x)*(-1+5*x)
Derivative of
:
1-x
Graphing y =
:
1-x
Integral of d{x}
:
1-x
Identical expressions
one -x
1 minus x
one minus x
Similar expressions
1+x
Limit of the function
/
1-x
Limit of the function 1-x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (1 - x) x->oo
$$\lim_{x \to \infty}\left(1 - x\right)$$
Limit(1 - x, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(1 - x\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty}\left(1 - x\right)$$ =
$$\lim_{x \to \infty}\left(\frac{-1 + \frac{1}{x}}{\frac{1}{x}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{-1 + \frac{1}{x}}{\frac{1}{x}}\right) = \lim_{u \to 0^+}\left(\frac{u - 1}{u}\right)$$
=
$$\frac{-1}{0} = -\infty$$
The final answer:
$$\lim_{x \to \infty}\left(1 - x\right) = -\infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(1 - x\right) = -\infty$$
$$\lim_{x \to 0^-}\left(1 - x\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(1 - x\right) = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(1 - x\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(1 - x\right) = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(1 - x\right) = \infty$$
More at x→-oo
Rapid solution
[src]
-oo
$$-\infty$$
Expand and simplify
The graph