Mister Exam

Other calculators:


1-2*x

Limit of the function 1-2*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (1 - 2*x)
x->1+         
$$\lim_{x \to 1^+}\left(1 - 2 x\right)$$
Limit(1 - 2*x, x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
 lim (1 - 2*x)
x->1+         
$$\lim_{x \to 1^+}\left(1 - 2 x\right)$$
-1
$$-1$$
= -1.0
 lim (1 - 2*x)
x->1-         
$$\lim_{x \to 1^-}\left(1 - 2 x\right)$$
-1
$$-1$$
= -1.0
= -1.0
Rapid solution [src]
-1
$$-1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(1 - 2 x\right) = -1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(1 - 2 x\right) = -1$$
$$\lim_{x \to \infty}\left(1 - 2 x\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(1 - 2 x\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(1 - 2 x\right) = 1$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(1 - 2 x\right) = \infty$$
More at x→-oo
Numerical answer [src]
-1.0
-1.0
The graph
Limit of the function 1-2*x