Mister Exam

Other calculators:


(1-4*x)^(1-x)/x

Limit of the function (1-4*x)^(1-x)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /         1 - x\
     |(1 - 4*x)     |
 lim |--------------|
x->0+\      x       /
$$\lim_{x \to 0^+}\left(\frac{\left(1 - 4 x\right)^{1 - x}}{x}\right)$$
Limit((1 - 4*x)^(1 - x)/x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\left(1 - 4 x\right)^{1 - x}}{x}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\left(1 - 4 x\right)^{1 - x}}{x}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{\left(1 - 4 x\right)^{1 - x}}{x}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\left(1 - 4 x\right)^{1 - x}}{x}\right) = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\left(1 - 4 x\right)^{1 - x}}{x}\right) = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\left(1 - 4 x\right)^{1 - x}}{x}\right) = -\infty$$
More at x→-oo
One‐sided limits [src]
     /         1 - x\
     |(1 - 4*x)     |
 lim |--------------|
x->0+\      x       /
$$\lim_{x \to 0^+}\left(\frac{\left(1 - 4 x\right)^{1 - x}}{x}\right)$$
oo
$$\infty$$
= 147.026138388191
     /         1 - x\
     |(1 - 4*x)     |
 lim |--------------|
x->0-\      x       /
$$\lim_{x \to 0^-}\left(\frac{\left(1 - 4 x\right)^{1 - x}}{x}\right)$$
-oo
$$-\infty$$
= -155.026840193896
= -155.026840193896
Numerical answer [src]
147.026138388191
147.026138388191
The graph
Limit of the function (1-4*x)^(1-x)/x