Mister Exam

Other calculators:


1/x+log(x)

Limit of the function 1/x+log(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /1         \
 lim |- + log(x)|
x->0+\x         /
$$\lim_{x \to 0^+}\left(\log{\left(x \right)} + \frac{1}{x}\right)$$
Limit(1/x + log(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\log{\left(x \right)} + \frac{1}{x}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\log{\left(x \right)} + \frac{1}{x}\right) = \infty$$
$$\lim_{x \to \infty}\left(\log{\left(x \right)} + \frac{1}{x}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(\log{\left(x \right)} + \frac{1}{x}\right) = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\log{\left(x \right)} + \frac{1}{x}\right) = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\log{\left(x \right)} + \frac{1}{x}\right) = \infty$$
More at x→-oo
Rapid solution [src]
oo
$$\infty$$
One‐sided limits [src]
     /1         \
 lim |- + log(x)|
x->0+\x         /
$$\lim_{x \to 0^+}\left(\log{\left(x \right)} + \frac{1}{x}\right)$$
oo
$$\infty$$
= 145.982720163185
     /1         \
 lim |- + log(x)|
x->0-\x         /
$$\lim_{x \to 0^-}\left(\log{\left(x \right)} + \frac{1}{x}\right)$$
-oo
$$-\infty$$
= (-156.017279836815 + 3.14159265358979j)
= (-156.017279836815 + 3.14159265358979j)
Numerical answer [src]
145.982720163185
145.982720163185
The graph
Limit of the function 1/x+log(x)