Mister Exam

Other calculators:


1/(x*cos(x))

Limit of the function 1/(x*cos(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        1    
 lim --------
x->0+x*cos(x)
$$\lim_{x \to 0^+} \frac{1}{x \cos{\left(x \right)}}$$
Limit(1/(x*cos(x)), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
One‐sided limits [src]
        1    
 lim --------
x->0+x*cos(x)
$$\lim_{x \to 0^+} \frac{1}{x \cos{\left(x \right)}}$$
oo
$$\infty$$
= 151.003311318789
        1    
 lim --------
x->0-x*cos(x)
$$\lim_{x \to 0^-} \frac{1}{x \cos{\left(x \right)}}$$
-oo
$$-\infty$$
= -151.003311318789
= -151.003311318789
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \frac{1}{x \cos{\left(x \right)}} = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{x \cos{\left(x \right)}} = \infty$$
$$\lim_{x \to \infty} \frac{1}{x \cos{\left(x \right)}}$$
More at x→oo
$$\lim_{x \to 1^-} \frac{1}{x \cos{\left(x \right)}} = \frac{1}{\cos{\left(1 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{x \cos{\left(x \right)}} = \frac{1}{\cos{\left(1 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{x \cos{\left(x \right)}}$$
More at x→-oo
Numerical answer [src]
151.003311318789
151.003311318789
The graph
Limit of the function 1/(x*cos(x))