Mister Exam

Other calculators:


1/(2-x)

Limit of the function 1/(2-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
       1  
 lim -----
x->2+2 - x
limx2+12x\lim_{x \to 2^+} \frac{1}{2 - x}
Limit(1/(2 - x), x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-4.0-3.0-2.0-1.04.00.01.02.03.0-200200
Other limits x→0, -oo, +oo, 1
limx212x=\lim_{x \to 2^-} \frac{1}{2 - x} = -\infty
More at x→2 from the left
limx2+12x=\lim_{x \to 2^+} \frac{1}{2 - x} = -\infty
limx12x=0\lim_{x \to \infty} \frac{1}{2 - x} = 0
More at x→oo
limx012x=12\lim_{x \to 0^-} \frac{1}{2 - x} = \frac{1}{2}
More at x→0 from the left
limx0+12x=12\lim_{x \to 0^+} \frac{1}{2 - x} = \frac{1}{2}
More at x→0 from the right
limx112x=1\lim_{x \to 1^-} \frac{1}{2 - x} = 1
More at x→1 from the left
limx1+12x=1\lim_{x \to 1^+} \frac{1}{2 - x} = 1
More at x→1 from the right
limx12x=0\lim_{x \to -\infty} \frac{1}{2 - x} = 0
More at x→-oo
One‐sided limits [src]
       1  
 lim -----
x->2+2 - x
limx2+12x\lim_{x \to 2^+} \frac{1}{2 - x}
-oo
-\infty
= -151.0
       1  
 lim -----
x->2-2 - x
limx212x\lim_{x \to 2^-} \frac{1}{2 - x}
oo
\infty
= 151.0
= 151.0
Rapid solution [src]
-oo
-\infty
Numerical answer [src]
-151.0
-151.0
The graph
Limit of the function 1/(2-x)