Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (4-x^2)/(3-x^2)
Limit of (-2+x^2-x)/(-2+x+3*x^2)
Limit of 5-9*x+3*x^2/2
Limit of (-16+x^2)/(-64+x^3)
Integral of d{x}
:
1/(2-x)
Graphing y =
:
1/(2-x)
Identical expressions
one /(two -x)
1 divide by (2 minus x)
one divide by (two minus x)
1/2-x
1 divide by (2-x)
Similar expressions
1/(2+x)
-1/2-x-1/x+6*x^2
-1/2-x-3*x/(-8+2*x^2)
1/2-x+x^2*log(1+1/x)
1/2-x^2+3*x^4
Limit of the function
/
1/(2-x)
Limit of the function 1/(2-x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
1 lim ----- x->2+2 - x
$$\lim_{x \to 2^+} \frac{1}{2 - x}$$
Limit(1/(2 - x), x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-} \frac{1}{2 - x} = -\infty$$
More at x→2 from the left
$$\lim_{x \to 2^+} \frac{1}{2 - x} = -\infty$$
$$\lim_{x \to \infty} \frac{1}{2 - x} = 0$$
More at x→oo
$$\lim_{x \to 0^-} \frac{1}{2 - x} = \frac{1}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{2 - x} = \frac{1}{2}$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{2 - x} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{2 - x} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{2 - x} = 0$$
More at x→-oo
One‐sided limits
[src]
1 lim ----- x->2+2 - x
$$\lim_{x \to 2^+} \frac{1}{2 - x}$$
-oo
$$-\infty$$
= -151.0
1 lim ----- x->2-2 - x
$$\lim_{x \to 2^-} \frac{1}{2 - x}$$
oo
$$\infty$$
= 151.0
= 151.0
Rapid solution
[src]
-oo
$$-\infty$$
Expand and simplify
Numerical answer
[src]
-151.0
-151.0
The graph