Mister Exam

Other calculators:


1/(2-x)

Limit of the function 1/(2-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
       1  
 lim -----
x->2+2 - x
$$\lim_{x \to 2^+} \frac{1}{2 - x}$$
Limit(1/(2 - x), x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-} \frac{1}{2 - x} = -\infty$$
More at x→2 from the left
$$\lim_{x \to 2^+} \frac{1}{2 - x} = -\infty$$
$$\lim_{x \to \infty} \frac{1}{2 - x} = 0$$
More at x→oo
$$\lim_{x \to 0^-} \frac{1}{2 - x} = \frac{1}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{2 - x} = \frac{1}{2}$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{2 - x} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{2 - x} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{2 - x} = 0$$
More at x→-oo
One‐sided limits [src]
       1  
 lim -----
x->2+2 - x
$$\lim_{x \to 2^+} \frac{1}{2 - x}$$
-oo
$$-\infty$$
= -151.0
       1  
 lim -----
x->2-2 - x
$$\lim_{x \to 2^-} \frac{1}{2 - x}$$
oo
$$\infty$$
= 151.0
= 151.0
Rapid solution [src]
-oo
$$-\infty$$
Numerical answer [src]
-151.0
-151.0
The graph
Limit of the function 1/(2-x)