Mister Exam

Other calculators:


1/(3*x)

Limit of the function 1/(3*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      1 
 lim ---
x->oo3*x
$$\lim_{x \to \infty} \frac{1}{3 x}$$
Limit(1/(3*x), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty} \frac{1}{3 x}$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty} \frac{1}{3 x}$$ =
$$\lim_{x \to \infty}\left(\frac{\frac{1}{3} \frac{1}{x}}{1}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{\frac{1}{3} \frac{1}{x}}{1}\right) = \lim_{u \to 0^+}\left(\frac{u}{3}\right)$$
=
$$\frac{0}{3} = 0$$

The final answer:
$$\lim_{x \to \infty} \frac{1}{3 x} = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \frac{1}{3 x} = 0$$
$$\lim_{x \to 0^-} \frac{1}{3 x} = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{3 x} = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{3 x} = \frac{1}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{3 x} = \frac{1}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{3 x} = 0$$
More at x→-oo
Rapid solution [src]
0
$$0$$
The graph
Limit of the function 1/(3*x)