Mister Exam

Other calculators:


1/(cos(x)+sin(x))

Limit of the function 1/(cos(x)+sin(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
               1       
  lim   ---------------
   3*pi cos(x) + sin(x)
x->----+               
    4                  
$$\lim_{x \to \frac{3 \pi}{4}^+} \frac{1}{\sin{\left(x \right)} + \cos{\left(x \right)}}$$
Limit(1/(cos(x) + sin(x)), x, (3*pi)/4)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo
$$-\infty$$
One‐sided limits [src]
               1       
  lim   ---------------
   3*pi cos(x) + sin(x)
x->----+               
    4                  
$$\lim_{x \to \frac{3 \pi}{4}^+} \frac{1}{\sin{\left(x \right)} + \cos{\left(x \right)}}$$
-oo
$$-\infty$$
= -106.773904434225
               1       
  lim   ---------------
   3*pi cos(x) + sin(x)
x->-----               
    4                  
$$\lim_{x \to \frac{3 \pi}{4}^-} \frac{1}{\sin{\left(x \right)} + \cos{\left(x \right)}}$$
oo
$$\infty$$
= 106.773904434222
= 106.773904434222
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{3 \pi}{4}^-} \frac{1}{\sin{\left(x \right)} + \cos{\left(x \right)}} = -\infty$$
More at x→(3*pi)/4 from the left
$$\lim_{x \to \frac{3 \pi}{4}^+} \frac{1}{\sin{\left(x \right)} + \cos{\left(x \right)}} = -\infty$$
$$\lim_{x \to \infty} \frac{1}{\sin{\left(x \right)} + \cos{\left(x \right)}} = \left\langle -\infty, \infty\right\rangle$$
More at x→oo
$$\lim_{x \to 0^-} \frac{1}{\sin{\left(x \right)} + \cos{\left(x \right)}} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{\sin{\left(x \right)} + \cos{\left(x \right)}} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{\sin{\left(x \right)} + \cos{\left(x \right)}} = \frac{1}{\cos{\left(1 \right)} + \sin{\left(1 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{\sin{\left(x \right)} + \cos{\left(x \right)}} = \frac{1}{\cos{\left(1 \right)} + \sin{\left(1 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{\sin{\left(x \right)} + \cos{\left(x \right)}} = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo
Numerical answer [src]
-106.773904434225
-106.773904434225
The graph
Limit of the function 1/(cos(x)+sin(x))