Mister Exam

Other calculators:

Limit of the function n*x^n

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   n\
 lim \n*x /
n->oo      
$$\lim_{n \to \infty}\left(n x^{n}\right)$$
Limit(n*x^n, n, oo, dir='-')
Rapid solution [src]
None
None
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(n x^{n}\right)$$
$$\lim_{n \to 0^-}\left(n x^{n}\right) = 0$$
More at n→0 from the left
$$\lim_{n \to 0^+}\left(n x^{n}\right) = 0$$
More at n→0 from the right
$$\lim_{n \to 1^-}\left(n x^{n}\right) = x$$
More at n→1 from the left
$$\lim_{n \to 1^+}\left(n x^{n}\right) = x$$
More at n→1 from the right
$$\lim_{n \to -\infty}\left(n x^{n}\right)$$
More at n→-oo