Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of 1-cos(3*x)
Limit of ((6+5*x)/(-1+5*x))^((1+2*x^2)/x)
Limit of (-3*5^(1+x)+5*2^x)/(2*5^x+100*2^x)
Limit of (4^x-9^x)/(4^(1+x)+9^(1+x))
Integral of d{x}
:
-x^2+3*x
Factor polynomial
:
-x^2+3*x
Identical expressions
-x^ two + three *x
minus x squared plus 3 multiply by x
minus x to the power of two plus three multiply by x
-x2+3*x
-x²+3*x
-x to the power of 2+3*x
-x^2+3x
-x2+3x
Similar expressions
-x^2-3*x
(-6-x+5*x^2)/(4-x^2+3*x)
x^2+3*x
Limit of the function
/
-x^2+3*x
Limit of the function -x^2+3*x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 2 \ lim \- x + 3*x/ x->oo
$$\lim_{x \to \infty}\left(- x^{2} + 3 x\right)$$
Limit(-x^2 + 3*x, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(- x^{2} + 3 x\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty}\left(- x^{2} + 3 x\right)$$ =
$$\lim_{x \to \infty}\left(\frac{-1 + \frac{3}{x}}{\frac{1}{x^{2}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{-1 + \frac{3}{x}}{\frac{1}{x^{2}}}\right) = \lim_{u \to 0^+}\left(\frac{3 u - 1}{u^{2}}\right)$$
=
$$\frac{-1 + 0 \cdot 3}{0} = -\infty$$
The final answer:
$$\lim_{x \to \infty}\left(- x^{2} + 3 x\right) = -\infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
-oo
$$-\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(- x^{2} + 3 x\right) = -\infty$$
$$\lim_{x \to 0^-}\left(- x^{2} + 3 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- x^{2} + 3 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- x^{2} + 3 x\right) = 2$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- x^{2} + 3 x\right) = 2$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- x^{2} + 3 x\right) = -\infty$$
More at x→-oo
The graph