Mister Exam

Other calculators:


-x^2-2*x

Limit of the function -x^2-2*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /   2      \
 lim  \- x  - 2*x/
x->10+            
$$\lim_{x \to 10^+}\left(- x^{2} - 2 x\right)$$
Limit(-x^2 - 2*x, x, 10)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-120
$$-120$$
One‐sided limits [src]
      /   2      \
 lim  \- x  - 2*x/
x->10+            
$$\lim_{x \to 10^+}\left(- x^{2} - 2 x\right)$$
-120
$$-120$$
= -120.0
      /   2      \
 lim  \- x  - 2*x/
x->10-            
$$\lim_{x \to 10^-}\left(- x^{2} - 2 x\right)$$
-120
$$-120$$
= -120.0
= -120.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 10^-}\left(- x^{2} - 2 x\right) = -120$$
More at x→10 from the left
$$\lim_{x \to 10^+}\left(- x^{2} - 2 x\right) = -120$$
$$\lim_{x \to \infty}\left(- x^{2} - 2 x\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(- x^{2} - 2 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- x^{2} - 2 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- x^{2} - 2 x\right) = -3$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- x^{2} - 2 x\right) = -3$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- x^{2} - 2 x\right) = -\infty$$
More at x→-oo
Numerical answer [src]
-120.0
-120.0
The graph
Limit of the function -x^2-2*x