Mister Exam

Other calculators:


-x^3+3*x

Limit of the function -x^3+3*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /   3      \
 lim  \- x  + 3*x/
x->-oo            
$$\lim_{x \to -\infty}\left(- x^{3} + 3 x\right)$$
Limit(-x^3 + 3*x, x, -oo)
Detail solution
Let's take the limit
$$\lim_{x \to -\infty}\left(- x^{3} + 3 x\right)$$
Let's divide numerator and denominator by x^3:
$$\lim_{x \to -\infty}\left(- x^{3} + 3 x\right)$$ =
$$\lim_{x \to -\infty}\left(\frac{-1 + \frac{3}{x^{2}}}{\frac{1}{x^{3}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to -\infty}\left(\frac{-1 + \frac{3}{x^{2}}}{\frac{1}{x^{3}}}\right) = \lim_{u \to 0^+}\left(\frac{3 u^{2} - 1}{u^{3}}\right)$$
=
$$\frac{-1 + 3 \cdot 0^{2}}{0} = \infty$$

The final answer:
$$\lim_{x \to -\infty}\left(- x^{3} + 3 x\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(- x^{3} + 3 x\right) = \infty$$
$$\lim_{x \to \infty}\left(- x^{3} + 3 x\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(- x^{3} + 3 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- x^{3} + 3 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- x^{3} + 3 x\right) = 2$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- x^{3} + 3 x\right) = 2$$
More at x→1 from the right
The graph
Limit of the function -x^3+3*x