Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-64+4^x)/(-3+x)
Limit of (3-x^2+5*x)/(4*x^7+81*x)
Limit of (-2+2*x^3+7*x)/(-4-x+3*x^3)
Limit of (1-sin(x))/cos(x)
Graphing y =
:
-x^3+3*x
Derivative of
:
-x^3+3*x
Integral of d{x}
:
-x^3+3*x
Identical expressions
-x^ three + three *x
minus x cubed plus 3 multiply by x
minus x to the power of three plus three multiply by x
-x3+3*x
-x³+3*x
-x to the power of 3+3*x
-x^3+3x
-x3+3x
Similar expressions
-x^3-3*x
x^3+3*x
Limit of the function
/
-x^3+3*x
Limit of the function -x^3+3*x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 3 \ lim \- x + 3*x/ x->-oo
$$\lim_{x \to -\infty}\left(- x^{3} + 3 x\right)$$
Limit(-x^3 + 3*x, x, -oo)
Detail solution
Let's take the limit
$$\lim_{x \to -\infty}\left(- x^{3} + 3 x\right)$$
Let's divide numerator and denominator by x^3:
$$\lim_{x \to -\infty}\left(- x^{3} + 3 x\right)$$ =
$$\lim_{x \to -\infty}\left(\frac{-1 + \frac{3}{x^{2}}}{\frac{1}{x^{3}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to -\infty}\left(\frac{-1 + \frac{3}{x^{2}}}{\frac{1}{x^{3}}}\right) = \lim_{u \to 0^+}\left(\frac{3 u^{2} - 1}{u^{3}}\right)$$
=
$$\frac{-1 + 3 \cdot 0^{2}}{0} = \infty$$
The final answer:
$$\lim_{x \to -\infty}\left(- x^{3} + 3 x\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(- x^{3} + 3 x\right) = \infty$$
$$\lim_{x \to \infty}\left(- x^{3} + 3 x\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(- x^{3} + 3 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- x^{3} + 3 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- x^{3} + 3 x\right) = 2$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- x^{3} + 3 x\right) = 2$$
More at x→1 from the right
The graph