Mister Exam

Limit of the function -x^4

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  4\
 lim \-x /
x->oo     
$$\lim_{x \to \infty}\left(- x^{4}\right)$$
Limit(-x^4, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(- x^{4}\right)$$
Let's divide numerator and denominator by x^4:
$$\lim_{x \to \infty}\left(- x^{4}\right)$$ =
$$\lim_{x \to \infty} \frac{1}{\left(-1\right) \frac{1}{x^{4}}}$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty} \frac{1}{\left(-1\right) \frac{1}{x^{4}}} = \lim_{u \to 0^+}\left(- \frac{1}{u^{4}}\right)$$
=
$$- \frac{1}{0} = -\infty$$

The final answer:
$$\lim_{x \to \infty}\left(- x^{4}\right) = -\infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo
$$-\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(- x^{4}\right) = -\infty$$
$$\lim_{x \to 0^-}\left(- x^{4}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- x^{4}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- x^{4}\right) = -1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- x^{4}\right) = -1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- x^{4}\right) = -\infty$$
More at x→-oo
The graph
Limit of the function -x^4