Mister Exam

Other calculators:


-x*log(x)^2

Limit of the function -x*log(x)^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /      2   \
 lim \-x*log (x)/
x->0+            
$$\lim_{x \to 0^+}\left(- x \log{\left(x \right)}^{2}\right)$$
Limit((-x)*log(x)^2, x, 0)
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
     /      2   \
 lim \-x*log (x)/
x->0+            
$$\lim_{x \to 0^+}\left(- x \log{\left(x \right)}^{2}\right)$$
0
$$0$$
= -0.0145268477491906
     /      2   \
 lim \-x*log (x)/
x->0-            
$$\lim_{x \to 0^-}\left(- x \log{\left(x \right)}^{2}\right)$$
0
$$0$$
= (0.0126046545241533 - 0.0122434670558655j)
= (0.0126046545241533 - 0.0122434670558655j)
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(- x \log{\left(x \right)}^{2}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- x \log{\left(x \right)}^{2}\right) = 0$$
$$\lim_{x \to \infty}\left(- x \log{\left(x \right)}^{2}\right) = -\infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(- x \log{\left(x \right)}^{2}\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- x \log{\left(x \right)}^{2}\right) = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- x \log{\left(x \right)}^{2}\right) = \infty$$
More at x→-oo
Numerical answer [src]
-0.0145268477491906
-0.0145268477491906
The graph
Limit of the function -x*log(x)^2