$$\lim_{x \to \infty}\left(- x \cos{\left(x \right)} + \sin{\left(x \right)}\right) = \left\langle -\infty, \infty\right\rangle$$
$$\lim_{x \to 0^-}\left(- x \cos{\left(x \right)} + \sin{\left(x \right)}\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(- x \cos{\left(x \right)} + \sin{\left(x \right)}\right) = 0$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(- x \cos{\left(x \right)} + \sin{\left(x \right)}\right) = - \cos{\left(1 \right)} + \sin{\left(1 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(- x \cos{\left(x \right)} + \sin{\left(x \right)}\right) = - \cos{\left(1 \right)} + \sin{\left(1 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(- x \cos{\left(x \right)} + \sin{\left(x \right)}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo