$$\lim_{x \to \infty}\left(\frac{22 x^{2}}{3} + \left(12 x - 2\right)\right) = \infty$$
$$\lim_{x \to 0^-}\left(\frac{22 x^{2}}{3} + \left(12 x - 2\right)\right) = -2$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{22 x^{2}}{3} + \left(12 x - 2\right)\right) = -2$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\frac{22 x^{2}}{3} + \left(12 x - 2\right)\right) = \frac{52}{3}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{22 x^{2}}{3} + \left(12 x - 2\right)\right) = \frac{52}{3}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{22 x^{2}}{3} + \left(12 x - 2\right)\right) = \infty$$
More at x→-oo