Mister Exam

Other calculators:


-2+5*x+14*x^2/3

Limit of the function -2+5*x+14*x^2/3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /               2\
      |           14*x |
 lim  |-2 + 5*x + -----|
x->-1+\             3  /
$$\lim_{x \to -1^+}\left(\frac{14 x^{2}}{3} + \left(5 x - 2\right)\right)$$
Limit(-2 + 5*x + (14*x^2)/3, x, -1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
      /               2\
      |           14*x |
 lim  |-2 + 5*x + -----|
x->-1+\             3  /
$$\lim_{x \to -1^+}\left(\frac{14 x^{2}}{3} + \left(5 x - 2\right)\right)$$
-7/3
$$- \frac{7}{3}$$
= -2.33333333333333
      /               2\
      |           14*x |
 lim  |-2 + 5*x + -----|
x->-1-\             3  /
$$\lim_{x \to -1^-}\left(\frac{14 x^{2}}{3} + \left(5 x - 2\right)\right)$$
-7/3
$$- \frac{7}{3}$$
= -2.33333333333333
= -2.33333333333333
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -1^-}\left(\frac{14 x^{2}}{3} + \left(5 x - 2\right)\right) = - \frac{7}{3}$$
More at x→-1 from the left
$$\lim_{x \to -1^+}\left(\frac{14 x^{2}}{3} + \left(5 x - 2\right)\right) = - \frac{7}{3}$$
$$\lim_{x \to \infty}\left(\frac{14 x^{2}}{3} + \left(5 x - 2\right)\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{14 x^{2}}{3} + \left(5 x - 2\right)\right) = -2$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{14 x^{2}}{3} + \left(5 x - 2\right)\right) = -2$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{14 x^{2}}{3} + \left(5 x - 2\right)\right) = \frac{23}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{14 x^{2}}{3} + \left(5 x - 2\right)\right) = \frac{23}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{14 x^{2}}{3} + \left(5 x - 2\right)\right) = \infty$$
More at x→-oo
Rapid solution [src]
-7/3
$$- \frac{7}{3}$$
Numerical answer [src]
-2.33333333333333
-2.33333333333333
The graph
Limit of the function -2+5*x+14*x^2/3