Mister Exam

Other calculators:


((-2+5*x)/(3+6*x))^x

Limit of the function ((-2+5*x)/(3+6*x))^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
               x
     /-2 + 5*x\ 
 lim |--------| 
x->oo\3 + 6*x / 
$$\lim_{x \to \infty} \left(\frac{5 x - 2}{6 x + 3}\right)^{x}$$
Limit(((-2 + 5*x)/(3 + 6*x))^x, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \left(\frac{5 x - 2}{6 x + 3}\right)^{x} = 0$$
$$\lim_{x \to 0^-} \left(\frac{5 x - 2}{6 x + 3}\right)^{x} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(\frac{5 x - 2}{6 x + 3}\right)^{x} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} \left(\frac{5 x - 2}{6 x + 3}\right)^{x} = \frac{1}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(\frac{5 x - 2}{6 x + 3}\right)^{x} = \frac{1}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(\frac{5 x - 2}{6 x + 3}\right)^{x} = \infty$$
More at x→-oo
The graph
Limit of the function ((-2+5*x)/(3+6*x))^x