Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((-2+x+x^2)/(1+x^2))^(-5+2*x^2)
Limit of (x+2*p)/p^2
Limit of (20+x^2-9*x)/(-16+x^2)
Limit of (-9+x^2)/(15+5*x)
Graphing y =
:
-2-x^2
Factor polynomial
:
-2-x^2
Identical expressions
- two -x^ two
minus 2 minus x squared
minus two minus x to the power of two
-2-x2
-2-x²
-2-x to the power of 2
Similar expressions
2-x^2
-2+x^2
Limit of the function
/
-2-x^2
Limit of the function -2-x^2
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 2\ lim \-2 - x / x->2+
$$\lim_{x \to 2^+}\left(- x^{2} - 2\right)$$
Limit(-2 - x^2, x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
-6
$$-6$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-}\left(- x^{2} - 2\right) = -6$$
More at x→2 from the left
$$\lim_{x \to 2^+}\left(- x^{2} - 2\right) = -6$$
$$\lim_{x \to \infty}\left(- x^{2} - 2\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(- x^{2} - 2\right) = -2$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- x^{2} - 2\right) = -2$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- x^{2} - 2\right) = -3$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- x^{2} - 2\right) = -3$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- x^{2} - 2\right) = -\infty$$
More at x→-oo
One‐sided limits
[src]
/ 2\ lim \-2 - x / x->2+
$$\lim_{x \to 2^+}\left(- x^{2} - 2\right)$$
-6
$$-6$$
= -6.0
/ 2\ lim \-2 - x / x->2-
$$\lim_{x \to 2^-}\left(- x^{2} - 2\right)$$
-6
$$-6$$
= -6.0
= -6.0
Numerical answer
[src]
-6.0
-6.0
The graph