Mister Exam

Other calculators:


-2-x^2

Limit of the function -2-x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /      2\
 lim \-2 - x /
x->2+         
$$\lim_{x \to 2^+}\left(- x^{2} - 2\right)$$
Limit(-2 - x^2, x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-6
$$-6$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-}\left(- x^{2} - 2\right) = -6$$
More at x→2 from the left
$$\lim_{x \to 2^+}\left(- x^{2} - 2\right) = -6$$
$$\lim_{x \to \infty}\left(- x^{2} - 2\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(- x^{2} - 2\right) = -2$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- x^{2} - 2\right) = -2$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- x^{2} - 2\right) = -3$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- x^{2} - 2\right) = -3$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- x^{2} - 2\right) = -\infty$$
More at x→-oo
One‐sided limits [src]
     /      2\
 lim \-2 - x /
x->2+         
$$\lim_{x \to 2^+}\left(- x^{2} - 2\right)$$
-6
$$-6$$
= -6.0
     /      2\
 lim \-2 - x /
x->2-         
$$\lim_{x \to 2^-}\left(- x^{2} - 2\right)$$
-6
$$-6$$
= -6.0
= -6.0
Numerical answer [src]
-6.0
-6.0
The graph
Limit of the function -2-x^2