Mister Exam

Other calculators:


-10+x^3-125*x/2

Limit of the function -10+x^3-125*x/2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /       3   125*x\
 lim |-10 + x  - -----|
x->5+\             2  /
$$\lim_{x \to 5^+}\left(- \frac{125 x}{2} + \left(x^{3} - 10\right)\right)$$
Limit(-10 + x^3 - 125*x/2, x, 5)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-395/2
$$- \frac{395}{2}$$
One‐sided limits [src]
     /       3   125*x\
 lim |-10 + x  - -----|
x->5+\             2  /
$$\lim_{x \to 5^+}\left(- \frac{125 x}{2} + \left(x^{3} - 10\right)\right)$$
-395/2
$$- \frac{395}{2}$$
= -197.5
     /       3   125*x\
 lim |-10 + x  - -----|
x->5-\             2  /
$$\lim_{x \to 5^-}\left(- \frac{125 x}{2} + \left(x^{3} - 10\right)\right)$$
-395/2
$$- \frac{395}{2}$$
= -197.5
= -197.5
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 5^-}\left(- \frac{125 x}{2} + \left(x^{3} - 10\right)\right) = - \frac{395}{2}$$
More at x→5 from the left
$$\lim_{x \to 5^+}\left(- \frac{125 x}{2} + \left(x^{3} - 10\right)\right) = - \frac{395}{2}$$
$$\lim_{x \to \infty}\left(- \frac{125 x}{2} + \left(x^{3} - 10\right)\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(- \frac{125 x}{2} + \left(x^{3} - 10\right)\right) = -10$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- \frac{125 x}{2} + \left(x^{3} - 10\right)\right) = -10$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- \frac{125 x}{2} + \left(x^{3} - 10\right)\right) = - \frac{143}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- \frac{125 x}{2} + \left(x^{3} - 10\right)\right) = - \frac{143}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- \frac{125 x}{2} + \left(x^{3} - 10\right)\right) = -\infty$$
More at x→-oo
Numerical answer [src]
-197.5
-197.5
The graph
Limit of the function -10+x^3-125*x/2