Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((3+x+x^2)/(-1+x+x^2))^(-x^2)
Limit of x*log((5+2*x)/(4+2*x))
Limit of (-8+x)/(-2+sqrt(3+x))
Limit of (4+x^7-2*x^5)/(6+x^2+2*x^5)
Derivative of
:
-60*x
Identical expressions
- sixty *x
minus 60 multiply by x
minus sixty multiply by x
-60x
Similar expressions
60*x
Limit of the function
/
-60*x
Limit of the function -60*x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (-60*x) x->-1+
$$\lim_{x \to -1^+}\left(- 60 x\right)$$
Limit(-60*x, x, -1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
One‐sided limits
[src]
lim (-60*x) x->-1+
$$\lim_{x \to -1^+}\left(- 60 x\right)$$
60
$$60$$
= 60.0
lim (-60*x) x->-1-
$$\lim_{x \to -1^-}\left(- 60 x\right)$$
60
$$60$$
= 60.0
= 60.0
Rapid solution
[src]
60
$$60$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -1^-}\left(- 60 x\right) = 60$$
More at x→-1 from the left
$$\lim_{x \to -1^+}\left(- 60 x\right) = 60$$
$$\lim_{x \to \infty}\left(- 60 x\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(- 60 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- 60 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- 60 x\right) = -60$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- 60 x\right) = -60$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- 60 x\right) = \infty$$
More at x→-oo
Numerical answer
[src]
60.0
60.0
The graph