Mister Exam

Other calculators:


(-64+x^3)/(-24+x^2+2*x)

Limit of the function (-64+x^3)/(-24+x^2+2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /          3   \
     |   -64 + x    |
 lim |--------------|
x->4+|       2      |
     \-24 + x  + 2*x/
$$\lim_{x \to 4^+}\left(\frac{x^{3} - 64}{2 x + \left(x^{2} - 24\right)}\right)$$
Limit((-64 + x^3)/(-24 + x^2 + 2*x), x, 4)
Detail solution
Let's take the limit
$$\lim_{x \to 4^+}\left(\frac{x^{3} - 64}{2 x + \left(x^{2} - 24\right)}\right)$$
transform
$$\lim_{x \to 4^+}\left(\frac{x^{3} - 64}{2 x + \left(x^{2} - 24\right)}\right)$$
=
$$\lim_{x \to 4^+}\left(\frac{\left(x - 4\right) \left(x^{2} + 4 x + 16\right)}{\left(x - 4\right) \left(x + 6\right)}\right)$$
=
$$\lim_{x \to 4^+}\left(\frac{x^{2} + 4 x + 16}{x + 6}\right) = $$
$$\frac{16 + 4^{2} + 4 \cdot 4}{4 + 6} = $$
= 24/5

The final answer:
$$\lim_{x \to 4^+}\left(\frac{x^{3} - 64}{2 x + \left(x^{2} - 24\right)}\right) = \frac{24}{5}$$
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 4^+}\left(x^{3} - 64\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 4^+}\left(x^{2} + 2 x - 24\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 4^+}\left(\frac{x^{3} - 64}{2 x + \left(x^{2} - 24\right)}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 4^+}\left(\frac{x^{3} - 64}{x^{2} + 2 x - 24}\right)$$
=
$$\lim_{x \to 4^+}\left(\frac{\frac{d}{d x} \left(x^{3} - 64\right)}{\frac{d}{d x} \left(x^{2} + 2 x - 24\right)}\right)$$
=
$$\lim_{x \to 4^+}\left(\frac{3 x^{2}}{2 x + 2}\right)$$
=
$$\lim_{x \to 4^+}\left(\frac{48}{2 x + 2}\right)$$
=
$$\lim_{x \to 4^+}\left(\frac{48}{2 x + 2}\right)$$
=
$$\frac{24}{5}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
24/5
$$\frac{24}{5}$$
One‐sided limits [src]
     /          3   \
     |   -64 + x    |
 lim |--------------|
x->4+|       2      |
     \-24 + x  + 2*x/
$$\lim_{x \to 4^+}\left(\frac{x^{3} - 64}{2 x + \left(x^{2} - 24\right)}\right)$$
24/5
$$\frac{24}{5}$$
= 4.8
     /          3   \
     |   -64 + x    |
 lim |--------------|
x->4-|       2      |
     \-24 + x  + 2*x/
$$\lim_{x \to 4^-}\left(\frac{x^{3} - 64}{2 x + \left(x^{2} - 24\right)}\right)$$
24/5
$$\frac{24}{5}$$
= 4.8
= 4.8
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 4^-}\left(\frac{x^{3} - 64}{2 x + \left(x^{2} - 24\right)}\right) = \frac{24}{5}$$
More at x→4 from the left
$$\lim_{x \to 4^+}\left(\frac{x^{3} - 64}{2 x + \left(x^{2} - 24\right)}\right) = \frac{24}{5}$$
$$\lim_{x \to \infty}\left(\frac{x^{3} - 64}{2 x + \left(x^{2} - 24\right)}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{x^{3} - 64}{2 x + \left(x^{2} - 24\right)}\right) = \frac{8}{3}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x^{3} - 64}{2 x + \left(x^{2} - 24\right)}\right) = \frac{8}{3}$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x^{3} - 64}{2 x + \left(x^{2} - 24\right)}\right) = 3$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x^{3} - 64}{2 x + \left(x^{2} - 24\right)}\right) = 3$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x^{3} - 64}{2 x + \left(x^{2} - 24\right)}\right) = -\infty$$
More at x→-oo
Numerical answer [src]
4.8
4.8
The graph
Limit of the function (-64+x^3)/(-24+x^2+2*x)