We have indeterminateness of type
0/0,
i.e. limit for the numerator is
$$\lim_{x \to 4^+}\left(x^{3} - 64\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 4^+}\left(x^{2} + 2 x - 24\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 4^+}\left(\frac{x^{3} - 64}{2 x + \left(x^{2} - 24\right)}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 4^+}\left(\frac{x^{3} - 64}{x^{2} + 2 x - 24}\right)$$
=
$$\lim_{x \to 4^+}\left(\frac{\frac{d}{d x} \left(x^{3} - 64\right)}{\frac{d}{d x} \left(x^{2} + 2 x - 24\right)}\right)$$
=
$$\lim_{x \to 4^+}\left(\frac{3 x^{2}}{2 x + 2}\right)$$
=
$$\lim_{x \to 4^+}\left(\frac{48}{2 x + 2}\right)$$
=
$$\lim_{x \to 4^+}\left(\frac{48}{2 x + 2}\right)$$
=
$$\frac{24}{5}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)