Mister Exam

Other calculators:


(-1)^n

Limit of the function (-1)^n

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
         n
 lim (-1) 
n->1+     
$$\lim_{n \to 1^+} \left(-1\right)^{n}$$
Limit((-1)^n, n, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-1
$$-1$$
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to 1^-} \left(-1\right)^{n} = -1$$
More at n→1 from the left
$$\lim_{n \to 1^+} \left(-1\right)^{n} = -1$$
$$\lim_{n \to \infty} \left(-1\right)^{n}$$
More at n→oo
$$\lim_{n \to 0^-} \left(-1\right)^{n} = 1$$
More at n→0 from the left
$$\lim_{n \to 0^+} \left(-1\right)^{n} = 1$$
More at n→0 from the right
$$\lim_{n \to -\infty} \left(-1\right)^{n}$$
More at n→-oo
One‐sided limits [src]
         n
 lim (-1) 
n->1+     
$$\lim_{n \to 1^+} \left(-1\right)^{n}$$
-1
$$-1$$
= (-1.0 - 4.27498954217603e-28j)
         n
 lim (-1) 
n->1-     
$$\lim_{n \to 1^-} \left(-1\right)^{n}$$
-1
$$-1$$
= (-1.0 + 4.27498954217603e-28j)
= (-1.0 + 4.27498954217603e-28j)
Numerical answer [src]
(-1.0 - 4.27498954217603e-28j)
(-1.0 - 4.27498954217603e-28j)
The graph
Limit of the function (-1)^n