Mister Exam

Other calculators:


(-1+sqrt(x))/(-3+x)

Limit of the function (-1+sqrt(x))/(-3+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /       ___\
     |-1 + \/ x |
 lim |----------|
x->3+\  -3 + x  /
$$\lim_{x \to 3^+}\left(\frac{\sqrt{x} - 1}{x - 3}\right)$$
Limit((-1 + sqrt(x))/(-3 + x), x, 3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 3^-}\left(\frac{\sqrt{x} - 1}{x - 3}\right) = \infty$$
More at x→3 from the left
$$\lim_{x \to 3^+}\left(\frac{\sqrt{x} - 1}{x - 3}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{\sqrt{x} - 1}{x - 3}\right) = 0$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{\sqrt{x} - 1}{x - 3}\right) = \frac{1}{3}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sqrt{x} - 1}{x - 3}\right) = \frac{1}{3}$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\sqrt{x} - 1}{x - 3}\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sqrt{x} - 1}{x - 3}\right) = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sqrt{x} - 1}{x - 3}\right) = 0$$
More at x→-oo
Rapid solution [src]
oo
$$\infty$$
One‐sided limits [src]
     /       ___\
     |-1 + \/ x |
 lim |----------|
x->3+\  -3 + x  /
$$\lim_{x \to 3^+}\left(\frac{\sqrt{x} - 1}{x - 3}\right)$$
oo
$$\infty$$
= 110.828187940107
     /       ___\
     |-1 + \/ x |
 lim |----------|
x->3-\  -3 + x  /
$$\lim_{x \to 3^-}\left(\frac{\sqrt{x} - 1}{x - 3}\right)$$
-oo
$$-\infty$$
= -110.250837319232
= -110.250837319232
Numerical answer [src]
110.828187940107
110.828187940107
The graph
Limit of the function (-1+sqrt(x))/(-3+x)