$$\lim_{x \to \infty}\left(\left(\frac{x}{2} + 5\right)^{x} - 1\right) = \infty$$
$$\lim_{x \to 0^-}\left(\left(\frac{x}{2} + 5\right)^{x} - 1\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\left(\frac{x}{2} + 5\right)^{x} - 1\right) = 0$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\left(\frac{x}{2} + 5\right)^{x} - 1\right) = \frac{9}{2}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\left(\frac{x}{2} + 5\right)^{x} - 1\right) = \frac{9}{2}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\left(\frac{x}{2} + 5\right)^{x} - 1\right) = \infty$$
More at x→-oo