Mister Exam

Other calculators:

Limit of the function -1+(5+x/2)^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /            x\
     |     /    x\ |
 lim |-1 + |5 + -| |
x->oo\     \    2/ /
$$\lim_{x \to \infty}\left(\left(\frac{x}{2} + 5\right)^{x} - 1\right)$$
Limit(-1 + (5 + x/2)^x, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\left(\frac{x}{2} + 5\right)^{x} - 1\right) = \infty$$
$$\lim_{x \to 0^-}\left(\left(\frac{x}{2} + 5\right)^{x} - 1\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\left(\frac{x}{2} + 5\right)^{x} - 1\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\left(\frac{x}{2} + 5\right)^{x} - 1\right) = \frac{9}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\left(\frac{x}{2} + 5\right)^{x} - 1\right) = \frac{9}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\left(\frac{x}{2} + 5\right)^{x} - 1\right) = \infty$$
More at x→-oo