$$\lim_{x \to \infty} \left(- \frac{1}{2}\right)^{x}$$ $$\lim_{x \to 0^-} \left(- \frac{1}{2}\right)^{x} = 1$$ More at x→0 from the left $$\lim_{x \to 0^+} \left(- \frac{1}{2}\right)^{x} = 1$$ More at x→0 from the right $$\lim_{x \to 1^-} \left(- \frac{1}{2}\right)^{x} = - \frac{1}{2}$$ More at x→1 from the left $$\lim_{x \to 1^+} \left(- \frac{1}{2}\right)^{x} = - \frac{1}{2}$$ More at x→1 from the right $$\lim_{x \to -\infty} \left(- \frac{1}{2}\right)^{x}$$ More at x→-oo