Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (sin(3*x)^2-sin(x)^2)/x^2
Limit of ((1+x)/(-2+x))^(3+x)
Limit of (-sin(2*x)+6*x)/(2*x+3*sin(4*x))
Limit of (x-2*x^2+4*x^3)/(2*x+3*x^2)
Sum of series
:
(-1/2)^n
Identical expressions
(- one / two)^n
( minus 1 divide by 2) to the power of n
( minus one divide by two) to the power of n
(-1/2)n
-1/2n
-1/2^n
(-1 divide by 2)^n
Similar expressions
(1/2)^n
Limit of the function
/
(-1/2)^n
Limit of the function (-1/2)^n
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
n lim -1/2 n->oo
lim
n
→
∞
(
−
1
2
)
n
\lim_{n \to \infty} \left(- \frac{1}{2}\right)^{n}
n
→
∞
lim
(
−
2
1
)
n
Limit((-1/2)^n, n, oo, dir='-')
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
2000
Plot the graph
Rapid solution
[src]
None
None
Expand and simplify
Other limits n→0, -oo, +oo, 1
lim
n
→
∞
(
−
1
2
)
n
\lim_{n \to \infty} \left(- \frac{1}{2}\right)^{n}
n
→
∞
lim
(
−
2
1
)
n
lim
n
→
0
−
(
−
1
2
)
n
=
1
\lim_{n \to 0^-} \left(- \frac{1}{2}\right)^{n} = 1
n
→
0
−
lim
(
−
2
1
)
n
=
1
More at n→0 from the left
lim
n
→
0
+
(
−
1
2
)
n
=
1
\lim_{n \to 0^+} \left(- \frac{1}{2}\right)^{n} = 1
n
→
0
+
lim
(
−
2
1
)
n
=
1
More at n→0 from the right
lim
n
→
1
−
(
−
1
2
)
n
=
−
1
2
\lim_{n \to 1^-} \left(- \frac{1}{2}\right)^{n} = - \frac{1}{2}
n
→
1
−
lim
(
−
2
1
)
n
=
−
2
1
More at n→1 from the left
lim
n
→
1
+
(
−
1
2
)
n
=
−
1
2
\lim_{n \to 1^+} \left(- \frac{1}{2}\right)^{n} = - \frac{1}{2}
n
→
1
+
lim
(
−
2
1
)
n
=
−
2
1
More at n→1 from the right
lim
n
→
−
∞
(
−
1
2
)
n
\lim_{n \to -\infty} \left(- \frac{1}{2}\right)^{n}
n
→
−
∞
lim
(
−
2
1
)
n
More at n→-oo
The graph