$$\lim_{n \to \infty} \left(- \frac{1}{2}\right)^{n}$$ $$\lim_{n \to 0^-} \left(- \frac{1}{2}\right)^{n} = 1$$ More at n→0 from the left $$\lim_{n \to 0^+} \left(- \frac{1}{2}\right)^{n} = 1$$ More at n→0 from the right $$\lim_{n \to 1^-} \left(- \frac{1}{2}\right)^{n} = - \frac{1}{2}$$ More at n→1 from the left $$\lim_{n \to 1^+} \left(- \frac{1}{2}\right)^{n} = - \frac{1}{2}$$ More at n→1 from the right $$\lim_{n \to -\infty} \left(- \frac{1}{2}\right)^{n}$$ More at n→-oo