Mister Exam

Other calculators:


-1/(2*log(x))

Limit of the function -1/(2*log(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  -1    \
 lim |--------|
x->oo\2*log(x)/
$$\lim_{x \to \infty}\left(- \frac{1}{2 \log{\left(x \right)}}\right)$$
Limit(-1/(2*log(x)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(- \frac{1}{2 \log{\left(x \right)}}\right) = 0$$
$$\lim_{x \to 0^-}\left(- \frac{1}{2 \log{\left(x \right)}}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- \frac{1}{2 \log{\left(x \right)}}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- \frac{1}{2 \log{\left(x \right)}}\right) = \infty$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- \frac{1}{2 \log{\left(x \right)}}\right) = -\infty$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- \frac{1}{2 \log{\left(x \right)}}\right) = 0$$
More at x→-oo
The graph
Limit of the function -1/(2*log(x))