$$\lim_{x \to \infty}\left(- \frac{1}{2 \log{\left(x \right)}}\right) = 0$$ $$\lim_{x \to 0^-}\left(- \frac{1}{2 \log{\left(x \right)}}\right) = 0$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(- \frac{1}{2 \log{\left(x \right)}}\right) = 0$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(- \frac{1}{2 \log{\left(x \right)}}\right) = \infty$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(- \frac{1}{2 \log{\left(x \right)}}\right) = -\infty$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(- \frac{1}{2 \log{\left(x \right)}}\right) = 0$$ More at x→-oo