Mister Exam

Other calculators:


-1/n^2

Limit of the function -1/n^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /-1 \
 lim |---|
n->oo|  2|
     \ n /
$$\lim_{n \to \infty}\left(- \frac{1}{n^{2}}\right)$$
Limit(-1/n^2, n, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{n \to \infty}\left(- \frac{1}{n^{2}}\right)$$
Let's divide numerator and denominator by n^2:
$$\lim_{n \to \infty}\left(- \frac{1}{n^{2}}\right)$$ =
$$\lim_{n \to \infty}\left(\frac{\left(-1\right) \frac{1}{n^{2}}}{1}\right)$$
Do Replacement
$$u = \frac{1}{n}$$
then
$$\lim_{n \to \infty}\left(\frac{\left(-1\right) \frac{1}{n^{2}}}{1}\right) = \lim_{u \to 0^+}\left(- u^{2}\right)$$
=
$$- 0^{2} = 0$$

The final answer:
$$\lim_{n \to \infty}\left(- \frac{1}{n^{2}}\right) = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(- \frac{1}{n^{2}}\right) = 0$$
$$\lim_{n \to 0^-}\left(- \frac{1}{n^{2}}\right) = -\infty$$
More at n→0 from the left
$$\lim_{n \to 0^+}\left(- \frac{1}{n^{2}}\right) = -\infty$$
More at n→0 from the right
$$\lim_{n \to 1^-}\left(- \frac{1}{n^{2}}\right) = -1$$
More at n→1 from the left
$$\lim_{n \to 1^+}\left(- \frac{1}{n^{2}}\right) = -1$$
More at n→1 from the right
$$\lim_{n \to -\infty}\left(- \frac{1}{n^{2}}\right) = 0$$
More at n→-oo
Rapid solution [src]
0
$$0$$
The graph
Limit of the function -1/n^2