$$\lim_{n \to \infty}\left(- \frac{1}{n^{2}}\right) = 0$$ $$\lim_{n \to 0^-}\left(- \frac{1}{n^{2}}\right) = -\infty$$ More at n→0 from the left $$\lim_{n \to 0^+}\left(- \frac{1}{n^{2}}\right) = -\infty$$ More at n→0 from the right $$\lim_{n \to 1^-}\left(- \frac{1}{n^{2}}\right) = -1$$ More at n→1 from the left $$\lim_{n \to 1^+}\left(- \frac{1}{n^{2}}\right) = -1$$ More at n→1 from the right $$\lim_{n \to -\infty}\left(- \frac{1}{n^{2}}\right) = 0$$ More at n→-oo